Sharp Power Mean Bounds for the Combination of Seiffert and Geometric Means

نویسندگان

  • Yu-Ming Chu
  • Ye-Fang Qiu
  • Miao-Kun Wang
  • Lance Littlejohn
چکیده

and Applied Analysis 3 The following sharp lower power mean bounds for 1/3 G a, b 2/3 H a, b , 2/3 G a, b 1/3 H a, b , and P a, b can be found in 4, 6 : 1 3 G a, b 2 3 H a, b > M−2/3 a, b , 2 3 G a, b 1 3 H a, b > M−1/3 a, b , P a, b > Mlog 2/ logπ a, b 1.8 for all a, b > 0 with a/ b. The purpose of this paper is to answer the question: for α ∈ 0, 1 , what are the greatest value p and the least value q such that the double inequality Mp a, b < P a, b G1−α a, b < Mq a, b holds for all a, b > 0 with a/ b. 2. Lemmas In order to prove our main result, we need several lemmas which we present in this section. Lemma 2.1. Let λ ∈ 0, 1/3 , x ∈ 1,∞ and h x 1−3λ x2λ 1− 1 3λ x2λ− 1 3λ x 1−3λ . Then there exists x0 > 1 such that h x < 0 for x ∈ 1, x0 , h x > 0 for x ∈ x0,∞ and h x0 0. Proof. Simple computations lead to h 1 −12λ < 0, 2.1 lim x→ ∞ h x ∞, 2.2 h′ x 1 − 3λ 2λ 1 x2λ − 2λ 1 3λ x2λ−1 − 1 3λ , h′ 1 −6λ 1 2λ < 0, 2.3 lim x→ ∞ h′ x ∞, 2.4 h′′ x 2λx2λ−2 1 2λ 1 − 3λ x 1 − 2λ 1 3λ > 0. 2.5 Inequality 2.5 implies that h′ x is strictly increasing in 1,∞ . Then 2.3 and 2.4 lead to that there exists x1 > 1 such that h′ x < 0 for x ∈ 1, x1 and h′ x > 0 for x ∈ x1,∞ . Hence, h x is strictly decreasing in 1, x1 and strictly increasing in x1,∞ . Therefore, Lemma 2.1 follows from 2.1 and 2.2 together with the monotonicity of h x . Lemma 2.2. If λ ∈ 1/√10, 1/3 , then the following statements are true: 1 300λ4 324λ3 29λ2 − 45λ − 8 < 0; 2 −1176λ5 − 24λ4 114λ3 10λ2 − 3λ − 1 < 0; 3 −24λ5 72λ4 178λ3 6λ2 − 25λ − 3 < 0. 4 Abstract and Applied Analysis Proof. Simple computations lead to 1 300λ4 324λ3 29λ2 −45λ−8 < 300× 1/3 4 324× 1/3 3 29× 1/3 2 −45/√10−8 590 − 243√10 /54 < 0; 2 −1176λ5 − 24λ4 114λ3 10λ2 − 3λ − 1 < −1176 × 1/√10 5 − 24 × 1/√10 4 114 × 1/3 3 10 × 1/3 2 − 3/√10 − 1 3070 − 1107√10 /750 < 0; 3 −24λ5 72λ4 178λ3 6λ2 − 25λ − 3 < −24 × 1/√10 5 72 × 1/3 4 178 × 1/3 3 6 × 1/3 2 − 25/√10 − 3 34750 − 17037√10 /6750 < 0. Lemma 2.3. If α ∈ 0, 3/√10 , then I a, b G1−α a, b < M2α/3 a, b 2.6 holds for all a, b > 0 with a/ b. Proof. Without loss of generality, we assume that a > b. Let t a/b > 1 and β α/3 ∈ 0, 1/ √ 10 . Then log M2α/3 a, b − log [ I a, b G1−α a, b ] log [ M2β a, b ] − log [ I3β a, b G1−3β a, b ] 1 2β log 1 t2β 2 − 3βt t − 1 log t − 1 − 3β 2 log t 3β. 2.7

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Sharp Bounds for Seiffert Mean in Terms of Weighted Power Means of Arithmetic Mean and Geometric Mean

For a,b > 0 with a = b , let P = (a− b)/(4arctana/b−π) , A = (a+ b)/2 , G = √ ab denote the Seiffert mean, arithmetic mean, geometric mean of a and b , respectively. In this paper, we present new sharp bounds for Seiffert P in terms of weighted power means of arithmetic mean A and geometric mean G : ( 2 3 A p1 + 3 G p1 )1/p1 < P < ( 2 3 A p2 + 3 G p2 )1/p2 , where p1 = 4/5 and p2 = logπ/2 (3/2)...

متن کامل

Sharp bounds for Seiffert mean in terms of root mean square

respectively. Recently, both mean values have been the subject of intensive research. In particular, many remarkable inequalities and properties for T and S can be found in the literature [1-14]. Let A(a, b) = (a + b)/2,G(a, b) = √ ab, and Mp(a, b) = ((a +b)/2) (p ≠ 0) and M0(a, b) = √ ab be the arithmetic, geometric, and pth power means of two positive numbers a and b, respectively. Then it is...

متن کامل

Optimal Convex Combination Bounds of Seiffert and Geometric Means for the Arithmetic Mean

We find the greatest value α and the least value β such that the double inequality αT (a,b) + (1−α)G(a,b) < A(a,b) < βT (a,b) + (1− β)G(a,b) holds for all a,b > 0 with a = b . Here T (a,b) , G(a,b) , and A(a,b) denote the Seiffert, geometric, and arithmetic means of two positive numbers a and b , respectively. Mathematics subject classification (2010): 26E60.

متن کامل

Some Sharp Inequalities Involving Seiffert and Other Means and Their Concise Proofs

In the paper, by establishing the monotonicity of some functions involving the sine and cosine functions, the authors provide a unified and concise proof of some known inequalities and find some new sharp inequalities involving the Seiffert, contra-harmonic, centroidal, arithmetic, geometric, harmonic, and root-square means of two positive real numbers a and b with a = b . Mathematics subject c...

متن کامل

The second geometric-arithmetic index for trees and unicyclic graphs

Let $G$ be a finite and simple graph with edge set $E(G)$. The second geometric-arithmetic index is defined as $GA_2(G)=sum_{uvin E(G)}frac{2sqrt{n_un_v}}{n_u+n_v}$, where $n_u$ denotes the number of vertices in $G$ lying closer to $u$ than to $v$. In this paper we find a sharp upper bound for $GA_2(T)$, where $T$ is tree, in terms of the order and maximum degree o...

متن کامل

Two Sharp Inequalities for Bounding the Seiffert Mean by the Arithmetic, Centroidal, and Contra-harmonic Means

In the paper, the authors find the best possible constants appeared in two inequalities for bounding the Seiffert mean by the linear combinations of the arithmetic, centroidal, and contra-harmonic means.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010